
Bashmatic®
BASH-based DSL helpers for humans, sysadmins, and

fun.

Version v3.3.1

Table of Contents
1. Please Donate . 1

2. CI Matrix . 2

3. Introduction. 3

4. Programming Style: Modern BASH + DSL . 5

5. Compatibility . 7

6. Project Motivation . 8

7. Installing Bashmatic . 9

7.1. 1. Automated Install . 9

7.2. 2. Automated Install, More Explicit . 9

7.2.1. Installing a Particular Version or a Branch . 10

7.2.2. Customizing the Installer Script . 10

7.3. Understanding what the Installer Does . 11

7.3.1. To load Bashmatic at Login, or Not?. 12

If you load Bashmatic on login (the default installer mode): . 12

If you do not want to load Bashnmatic on login . 13

7.4. When curl is not available . 14

7.4.1. Discovering Available Functions. 14

7.5. Manual Installation . 15

7.6. Using Git . 15

7.7. Using Curl . 15

7.8. Reloading Bashmatic . 15

7.9. Loading Bashmatic at Startup . 15

8. Discovering via the Makefile . 17

8.1. Befriending the Makefile . 18

8.2. Docker Make Targets . 18

9. Examples of Bashmatic in Action . 20

9.1. Example I. Install Gems via Homebrew . 20

9.2. Example II: Download and install binaries. 20

9.3. Example III: Developer Environment Bootstrap Script. 22

9.4. Example IV: Installing GRC Colourify Tool . 24

9.5. Example V: db Shortcut for Database Utilities & db top. 24

9.6. Other db Functions . 26

9.7. Sub-Commands of db . 27

9.7.1. Sub-Command db connections . 28

9.7.2. Sub-Command db pga (eg. pg_activity) . 29

9.7.3. Other Sub-Commands . 29

9.8. bin/tablet Script . 30

10. Usage . 32

10.1. Function Naming Convention Unpacked . 32

10.2. Seeing All Functions . 33

10.3. Seeing Specific Functions . 33

10.4. Various Modules . 33

10.5. Key Modules Explained. 33

10.5.1. Runtime Framework — Executing Commands The Right Way™ . 33

Examples of Runtime Framework . 36

10.5.2. Controlling Output . 36

Output Components . 38

Output Helpers . 38

10.5.3. Package management: Brew and RubyGems. 38

10.5.4. Shortening URLs and Github Access . 39

10.5.5. Github Access. 39

10.5.6. File Helpers . 40

10.5.7. Array Helpers . 40

10.5.8. Utilities . 41

10.5.9. Ruby and Ruby Gems. 41

Gem Helpers. 42

10.5.10. Audio & Video Compression Helpers. 43

10.5.11. Additional Helpers . 43

11. How To Guide . 45

11.1. Write new DSL in the Bashmatic® Style. 45

11.2. How can I test if the function was ran as part of a script, or "sourced-in"? 46

11.3. How can I change the underscan or overscan for an old monitor?. 46

12. Contributing . 47

12.1. Running Unit Tests . 47

12.1.1. Run Tests Using the Provided bin/specs script . 47

12.1.2. Running Specs Sequentially with bin/spec -P . 49

12.1.3. Run Tests Parallel using the Makefile. 49

12.1.4. Run Tests Sequentially using the Makefile . 50

13. Copyright & License. 51

Chapter 1. Please Donate

Donate
 [https://img.shields.io/liberapay/goal/kigster]

1

https://liberapay.com/kigster/donate
https://liberapay.com/kigster/donate

Chapter 2. CI Matrix
Table 1. CI Matrix

Badges FOSSA Scanning

FOSSSA [License Status]

[FOSSA License Scan]

CI Tests TestTest passingpassing

CI Install InstallInstall passingpassing

ShellCheck LintLint passingpassing

Gitter chatchat on gitteron gitter

2

https://app.fossa.com/projects/git%2Bgithub.com%2Fkigster%2Fbashmatic?ref=badge_shield
https://app.fossa.com/projects/git%2Bgithub.com%2Fkigster%2Fbashmatic?ref=badge_large
https://github.com/kigster/bashmatic/actions/workflows/tests.yml
https://github.com/kigster/bashmatic/actions/workflows/install.yml
https://github.com/kigster/bashmatic/actions/workflows/lint.yml
https://gitter.im/kigster/bashmatic?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge

Chapter 3. Introduction
Bashmatic® is a BASH framework, meaning its a collection of BASH functions (almost 900 of them)
that, we hope, make BASH programming easier, more enjoyable, and more importantly, fun -
due to the library’s focus on providing the developer with a constant feedback about what is
happening, while a script that uses Bashmatic’s helpers is running.

We suggest that you learn about Bashmatic from the PDF version of this
document which is much better for print.

• We recently began providing function documentation using a fork of shdoc
utility. You can find the auto-generated documentation in the USAGE file, or it’s
PDF version.

• There is also an auto-generated file listing the source of every function and
module. You can find it FUNCTIONS.

• Additionally please checkout the CHANGELOG and the LICENSE.

After you install the library (the default location is ~/.bashmatic), realize that you have a choice
of either:

• Automatically sourcing the library (and all 900+ functions) from your shell 'dotfiles'
like ~/.bash_profile by adding this line: source ~/.bashmatic/init.sh. On a recent M1 Apple
laptop this adds about 100ms total.

• OR, can skip it during your login initialization, and only load it at the top of the scripts
that use the library.

Both approaches are absolutely valid and have their pros and cons. Loading
bashmatic in your dotfiles could be a bit risky. One way or another we’ll soon
provide ways to verify that bashmatic you download is the safe and correct
version, every time.

All we’ll say on this matter is that we manage the optimize the hell out of the sourcing the library.
Here is an example:

3

https://github.com/kigster/bashmatic/blob/main/README.pdf
https://github.com/kigster/bashmatic/blob/main/README.pdf
https://github.com/kigster/bashmatic/blob/main/doc/USAGE.md
https://github.com/kigster/bashmatic/blob/main/doc/USAGE.pdf
https://github.com/kigster/bashmatic/blob/main/doc/FUNCTIONS.adoc
https://github.com/kigster/bashmatic/blob/main/doc/CHANGELOG.md
https://github.com/kigster/bashmatic/blob/main/doc/LICENSE.adoc

4

Chapter 4. Programming Style: Modern
BASH + DSL
Bashmatic®'s programming style is heavily influenced by Ruby’s DSL languages. If you take a quick
look at the is.sh script, it defines a bunch of DSL functions that can be chained with && and || to
create a compact and self-documenting code like this:

An example of a DSL-like function
function bashmatic.auto-update() {
 local dir="${1:-"${BASHMATIC_HOME"}}"
 is.a-directory "${dir}" && {
 file.exists-and-newer-than "${dir}/.last-update" 30 && return 0
 (
 cd ${BASHMATIC_HOME} && \
 git.is-it-time-to-update && \
 git.sync-remote
)
 }
}

check if the function is defined and call it
is.a-function.invoke bashmatic.auto-update "$@"

To use it in your own scripts, you’ll want to first study the Examples provided below, and take
advantage of ach module available under lib.

Final note, - once Bashmatic is installed and loaded by your shell init files, you can type
is.<tab><tab> to see what functions are available to you that start with is. Each module under lib
typically defines public functions starting with the name of the file. Such as, functions in array.sh
typically start with array.<something>.<action>

Bashmatic® offers a huge range of ever-growing helper functions for running commands, auto-
retrying, repeatable, runtime-measuring execution framework with the key function run. There are
helpers for every occasion, from drawing boxes, lines, headers, to showing progress bars, getting
user input, installing packages, and much more.

A good portion of the helpers within Bashmatic® are written for OS-X, although
many useful functions will also work under linux. Our entire test suite runs on
Ubuntu. There is an effort underway to convert Homebrew-specific functions to
OS-neutral helpers such as package.install that would work equally well on linux.

Start exploring Bashmatic® below with our examples section. When you are ready, the complete
entire set of pubic functions (nearly 500 of those) can be found in the functions index page.

5

https://github.com/kigster/bashmatic/blob/main/lib/is.sh
https://github.com/kigster/bashmatic/blob/main/doc/FUNCTIONS.adoc

And, finally, don’t worry, Bashmatic® is totally open source and free to use and extend. We just
like the way it looks with a little ® :)

6

Chapter 5. Compatibility
• BASH version 4+

• BASH version 3 (partial compatibility, some functions are disabled)

• ZSH – as of recent update, Bashmatic is almost 90% compatible with ZSH.

Not Currently Supported

• FISH (although you could use Bashmatic via bin/bashmatic script helper, or its executables)

7

Chapter 6. Project Motivation
This project was born out of a simple realization made by several very senior and highly
experienced engineers, that:

• It is often easier to use BASH for writing things like universal installers, a.k.a. setup scripts,
uploaders, wrappers for all sorts of functionality, such as NPM, rbenv, installing gems, rubies,
using AWS, deploying code, etc.

• BASH function’s return values lend themselves nicely to a compact DSL (domain specific
language) where multiple functions can be chained by logical AND && and OR || to provide a
very compact execution logic. Most importantly, we think that this logic is extremely easy to
read and understand.

Despite the above points, it is also generally accepted that:

• A lot of BASH scripts are very poorly written and hard to read and understand.

• It’s often difficult to understand what the hell is going on while the script is running, because
either its not outputting anything useful, OR it’s outputting way too much.

• When BASH errors occur, shit generally hits the fan and someone decides that they should
rewrite the 20-line BASH script in C++ or Go, because, well, it’s a goddamn BASH script and it
ain’t working.

Bashmatic's goal is to make BASH programming both fun, consistent, and provide
plenty of visible output to the user so that there is no mystery as to what is going
on.

8

https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language

Chapter 7. Installing Bashmatic
Perhaps the easiest way to install Bashmatic® is using curl as shown below.

First, make sure that you have Curl installed, run which curl to see. Then copy/paste this command
into your Terminal.

7.1. 1. Automated Install

bash -c "$(curl -fsSL https://bashmatic.re1.re); bashmatic-install -q"

Where:

• -q stands for "quiet";

• -v for "verbose"

The URL https://bashmatic.re1.re redirects to the HEAD of the bin/bashmatic-
install script in the Github Bashmatic Repo. We use this URL so that we retain the
ability to redirect the installation to a different script in the future, if need be.

7.2. 2. Automated Install, More Explicit
If you prefer to be able to examine the script before executing code piped straight off the Internet, I
don’t blame you. You are cautious and smart.

For folks like you, here is a slightly more secure way of doing the same thing:

export script="/tmp/install"
curl -fsSL https://bashmatic.re1.re > /tmp/install
chmod 755 /tmp/install

At this point you can examine /tmp/install
/tmp/install --help
/tmp/install --verbose --debug # install with extra info

This method allows you to examine the /tmp/install script before running it.

Below are some of the explanations

9

https://bashmatic.re1.re
https://raw.githubusercontent.com/kigster/bashmatic/main/bin/bashmatic-install
https://raw.githubusercontent.com/kigster/bashmatic/main/bin/bashmatic-install

7.2.1. Installing a Particular Version or a Branch

You can install a branch or a tag of Bashmatic by passing -b / --git-branch <tag|branch> flag.

7.2.2. Customizing the Installer Script

You can pass flags to the bashmatic-install function to control how, where to Bashmatic is installed,
and where from it is downloaded, including:

• -v or --verbose for displaying additional output, or the opposite:

• -d or --debug will print additional debugging output

• -f or --force will replace any existing bashmatic folder with the new one

• -q or --quiet for no output

• -l or --skip-on-login to NOT install the hook that loads Bashmatic on login.

• If you prefer to install Bashmatic in a non-standard location (the default is ~/.bashmatic), you
can use the -H PATH flag

Example 1. Example of a customized installation

For instance, here we are installing Bashmatic into a non-default destination, while printing
additional verbose & debug information, as well as using -f (force) to possibly overwrite the
destination folder (if it already exists) with a checkout of Bashmatic according to a tag v2.4.1:

bash -c "$(curl -fsSL https://bashmatic.re1.re); \
 bashmatic-install -d -v -f -b v2.4.1 -H ~/workspace/bashmatic"

If you have your SSH keys installed both locally, and the public key was configured with your
account on Github, you might want to install Bashmatic using git@github.com:kigster/bashmatic
origin, instead of the default https://github.com/kigster/bashmatic:

Here is the complete list of options accepted by the installer:

10

https://github.com/kigster/bashmatic

7.3. Understanding what the Installer Does
When you run bash -c "$(curl -fsSL https://bashmatic.re1.re); bashmatic-install", the following
typically happens:

• curl downloads the bin/bashmatic-install script and passes it to the built-in BASH for
evaluation.

• Once evaluated, function bashmatic-install is invoked, which actually performs the installation.

◦ This is the function that accepts the above listed arguments.

• The script may ask for your password to enable sudo access - this may be required on OS-X to
install XCode Developer tools (which include git)

• If your version of BASH is 3 or older, the script will download and build from sources version 5+

11

https://bashmatic.re1.re

of BASH, and install it into /usr/local/bin/bash. SUDO may be required for this step.

• On OS-X the script will install Homebrew on OS-X, if not already there.

◦ Once Brew is installed, brew packages coreutils and gnu-sed are installed, as both are
required and are relied upon by Bashmatic.

• The script will then attempt to git clone the bashmatic repo into the Bashmatic home folder, or
- if it already exists - it will git pull latest changes.

• Finally, unless you specify -l or --skip-on-login the script will check your bash dot files, and
will add the hook to load Bashmatic from either ~/.bashrc or ~/.bash_profile.

The last part my require some explanation.

7.3.1. To load Bashmatic at Login, or Not?

Now, you may or may not want to load Bashmatic on login.

If you load Bashmatic on login (the default installer mode):

In other words, you have something like this in your ~/.bashrc:

Let's see if ~/.bashrc mentions Bashmatic:
$ grep bashmatic ~/.bashrc
[[-f ~/.bashmatic/init.sh]] && source ~/.bashmatic/init.sh

 Pros of loading at login

Instant access to 800+ convenience functions Bashmatic© offers and helpers. Bashmatic
will auto-update whenever its loaded from the main branch.

 Cons of loading at login

About 134ms delay at login, and a potential security attack vector (eg, if someone hacks the
repo).

We recently dramatically improved the loading time of the entirety of
Bashmatic© functions. Previously it took nearly 900ms, almost a full second
to load 854 functions. Today it’s no more than 180ms:

❯ time source init.sh

real 0m0.134s
user 0m0.078s
sys 0m0.074s

If the above command shows the output you see above, when you grep your bashrc or zshrc, then
all Bashmatic Functions will be loaded into your shell. This could be very convenient, for instance,

12

• you could invoke ruby.install-ruby-with-readline-and-openssl 3.0.1 to get Ruby installed.

• You could invoke gem.remote.version sym to see that the last published verison of sym is 3.0.1.

• You could join an array of values with with array.join ", " apple pear orange

NOTICE: Bashmatic takes no more than 200-300ms to load typically. That said, you might not want
to have this many shell functions in your environment, so in that case you can skip login hook by
passing -l or --skip-on-login.

If you do not want to load Bashnmatic on login

Install it with:

bash -c "$(curl -fsSL https://bashmatic.re1.re); bashmatic-install -l"

In this case we suggest that you simply add the Bashmatic’s bin folder to the $PATH.

For instance:

~/.bashrc
export BASHMATIC_HOME="${HOME}/.bashmatic"
export PATH="${BASHMATIC_HOME}/bin:${PATH}"

Then you will have access to the executable script bashmatic which can be used *as a "gateway" to
all bashmatic functions:

You use it like so: bashmatic <function> <args>:

 Examples below assume you’ve set the PATH to include ${HOME}/.bashmatic/bin

Eg, if as in the previous example you sourced in Bashmatic:
$ bashmatic.version
2.1.2

If you have not, you can still invoke 'bashmatic.version':
$ bashmatic version

Or another function, 'array.join' — if you sourced in init.sh:
$ array.join '|' hello goodbye
hello|goodbye

Or using the script:
$ bashmatic array.join '|' hello goodbye
hello|goodbye

If you get an error, perhaps Bashmatic® did not properly install.

13

7.4. When curl is not available
Therefore for situawtion where curl may not be available, offer the following shell function that
works on Linux/Ubuntu and OS-X-based systems. It can be easily extended with new operating
systems:

@description Installs bashmatic dependency into the ~/.bashmatic folder.
function install_bashmatic() {
 # install bashmatic using https:// URL instead of git@
 command -v curl >/dev/null || {
 local OS=$(uname -s)
 local code
 case ${OS} in
 Linux)
 apt-get update -yq && apt-get install curl -yqq
 code=$?
 ((code)) && sudo apt-get update -yq && sudo apt-get install curl -yqq
 ;;
 Darwin)
 command -v brew >/dev/null || /bin/bash -c "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
 hash -r
 brew install curl
 ;;
 *)
 echo "OS ${OS} is not supported."
 ;;
 esac
 }
 [[-d ~/.bashmatic]] || bash -c "$(curl -fsSL https://bashmatic.re1.re); bashmatic-
install -q -m https"
 return 0
}

7.4.1. Discovering Available Functions

To discover the breadth of available functions, type the following command to see all imported
shell functions:

List all functions using 4-column mode; print top 5 lines.
❯ bashmatic functions 4 | head -5
7z.a db.psql.connect.db-set hl.yellow-on-gray run.inspect-variables
7z.install db.psql.connect.db-set hr run.inspect-variables-
7z.unzip db.psql.connect.just-d hr.colored run.inspect.set-skip-f
7z.x db.psql.connect.table- http.servers run.on-error.ask-is-en
7z.zip db.psql.connect.table- https.servers run.print-command

or, to get the count of all functions, use 1 column output:

14

$ bashmatic functions 1 | wc -l
773

7.5. Manual Installation
To install Bashmatic manually, follow these steps (feel free to change BASHMATIC_HOME if you like):

7.6. Using Git

export BASHMATIC_HOME="${HOME}/.bashmatic"
test -d "${BASHMATIC_HOME}" || \
 git clone https://github.com/kigster/bashmatic.git "${BASHMATIC_HOME}"
cd "${BASHMATIC_HOME}" && ./bin/bashmatic-install -v
cd ->/dev/null

7.7. Using Curl
Sometimes you may not be able to use git (I have seen issues ranging from local certificate
mismatch to old versions of git, and more), but maybe able to download with curl. In that case, you
can lookup the latest tag (substitute "v1.6.0" below with that tag), and then issue this command:

export BASHMATIC_TAG="v2.4.1"
set -e
cd ${HOME}
curl --insecure -fSsl \
 https://codeload.github.com/kigster/bashmatic/tar.gz/${BASHMATIC_TAG} \
 -o bashmatic.tar.gz
rm -rf .bashmatic && tar xvzf bashmatic.tar.gz && mv bashmatic-${BASHMATIC_TAG}
.bashmatic
source ~/.bashmatic/init.sh
cd ${HOME}/.bashmatic && ./bin/bashmatic-install -v
cd ~ >/dev/null

7.8. Reloading Bashmatic
You can always reload Bashmatic® with bashmatic.reload function. This simply performs the
sourcing of ${BASHMATIC_HOME}/init.sh.

7.9. Loading Bashmatic at Startup
When you install Bashmatic it automatically adds a hook to your ~/.bash_profile, but if you are on
ZSH you may need to add it manually (for now).

Add the following to your ~/.zshrc file:

15

https://github.com/kigster/bashmatic/tags

[[-f ~/.bashmatic/init.sh]] && source "~/.bashmatic/init.sh"

 The entire library takes less than 300ms to load on ZSH and a recent MacBook Pro.

16

Chapter 8. Discovering via the Makefile
The top-level Makefile is mostly provided as a convenience as it encapsulates some common tasks
used in development by Bashmatic Author(s), as well as others useful to anyone exploring
Bashmatic.

You can run make help and read the available targets:

❯ make

help Prints help message auto-generated from the comments.
open-readme Open README.pdf in the system viewer

docker-build Builds the Docker image with the tooling inside
docker-run-bash Drops you into a BASH session with Bashmatic Loaded
docker-run-fish Drops you into a FISH session with Bashmatic Loaded
docker-run-zsh Drops you into a ZSH session with Bashmatic Loaded
docker-run Drops you into a BASH session

file-stats-git Print all files known to `git ls-files` command
file-stats-local Print all non-test files and run `file` utility on them.

install-dev Installs the Development Tooling using dev-setup script
install-ruby Installs the Bashmatic default Ruby version using rbenv
install install BashMatic Locally in ~/.bashmatic

release Make a new release named after the latest tag
tag Tag this commit with .version and push to remote

setup Run the comprehensive development setup on this machine
shell-files Lists every single checked in SHELL file in this repo

test Run fully automated test suite based on Bats
test-parallel Run the fully auto-g mated test suite

update-changelog Auto-generate the doc/CHANGELOG (requires GITHUB_TOKEN env var set)
update-functions Auto-generate doc/FUNCTIONS index at doc/FUNCTIONS.adoc/pdf
update-readme Re-generate the PDF version of the README
update-usage Auto-generate doc/USAGE documentation from lib shell files,
 to doc/USAGE.adoc/pdf

update Runs all update targets to regenerate all PDF docs and the
 Changelog.

I’ve added whitespaces around a set of common tasks you might find useful.

Let’s take a quick look at what’s available here.

17

8.1. Befriending the Makefile
Makefile is provided as a convenience for running most common tasks and to simplify running
some more complex tasks that require remembering many arguments, such as make setup. You
might want to use the Makefile for several reasons:

1. make open-readme

This tasks opens the PDF version of the README in your PDF system viewer.

2. make install

This allows you to install the Bashmatic Framework locally. It simply runs bin/bashmatic-
install script. At most this will add hooks to your shell init files so that Bashmatic is loaded at
login.

3. make setup

This task invokes the bin/dev-setup script under the hood, so that you can setup your local
computer developer setup for software development.

Now, this script offers a very rich CLI interface, so you can either run the script directly and
have a fine-grained control over what it’s doing, or you can run it with default flags via this
make target.

This particular make target runs bin/dev-setup script with the following actions:

dev, cpp, fonts, gnu, go, java, js, load-balancing, postgres, ruby

4. make test and make test-parallel are both meant for Bashmatic Developers and contributors.
Please see the Contributing section on how to run and what to expect from the UNIT tests.

5. make update is the task that should be run by library contributors after they’ve made their their
changes and want the auto-generated documentation to reflect the new functions added and so
on and so force. This tasks also generates the function index, re-generate the latest PDFs of
README, USAGE or the CHANGELOG files.

 Running make update is is required for submitting any pull request.

8.2. Docker Make Targets
Bashmatic comes with a Dockerfile that can be used to run tests or jsut manually validate various
functionality under linux, and possibly to experiment.

Run make docker-build to create an docker image bashmatic:latest.

Run make docker-run-bash (or …-zsh or …-fish) to start a container with your favorite shell, and
then validate if your functions work as expected.

18

https://github.com/kigster/bashmatic#contributing

Note how this dropped me straight into the Linux environment prompt with Bashmatic already
installed.

19

Chapter 9. Examples of Bashmatic in Action
Why do we need another BASH framework?

BASH is know to be too verbose and unreliable. We beg to differ. This is why we wanted to start this
README with a couple of examples.

9.1. Example I. Install Gems via Homebrew
Just look at this tiny, five-line script:

#!/usr/bin/env bash

source ${BASHMATIC_HOME}/init.sh

h2 "Installing ruby gem sym and brew package curl..." \
 "Please standby..."

gem.install "sym" && brew.install.package "curl" && \
 success "installed sym ruby gem, version $(gem.version sym)"

Results in this detailed and, let’s be honest, gorgeous ASCII output:

Tell me you are not at all excited to start writing complex installation flows in BASH right away?

Not only you get pretty output, but you can each executed command, it’s exit status, whether it’s
been successful (green/red), as well each command’s bloody duration in milliseconds. What’s not to
like?!?

Still not convinced?

Take a look at a more comprehensive example next.

9.2. Example II: Download and install binaries.
In this example, we’ll download and install binaries kubectl and minikube binaries into
/usr/local/bin

We provided an example script in examples/k8s-installer.sh. Please click and take a look at the
source.

20

examples/k8s-installer.sh

Here is the output of running this script:

Why do we think this type of installer is pretty awesome, compared to a silent but deadly shell
script that "Jim-in-the-corner" wrote and now nobody understands?

Because:

1. The script goes out of its way to over-communicate what it does to the user.

2. It allows and reminds about a clean getaway (Ctrl-C)

3. It shares the exact command it runs and its timings so that you can eyeball issues like network
congestions or network addresses, etc.

4. It shows in green exit code '0' of each command. Should any of the commands fail, you’ll see it
in red.

5. It’s source code is terse, explicit, and easy to read. There is no magic. Just BASH functions.

If you need to create a BASH installer, Bashmatic® offers some incredible time
savers.

Let’s get back to the Earth, and talk about how to install Bashmatic, and how to use it in more detail
right after.

21

9.3. Example III: Developer Environment Bootstrap
Script
This final and most feature-rich example is not just an example – it’s a working functioning tool
that can be used to install a bunch of developer dependencies on your Apple Laptop.

the script relies on Homebrew behind the scenes, and therefore would not work
on linux or Windows (unless Brew gets ported there).

It’s located in bin/dev-setup and has many CLI flags:

22

https://github.com/kigster/bashmatic/blob/main/bin/dev-setup

In the example below we’ll use dev-setup script to install the following:

• Dev Tools

• PostgreSQL

• Redis

• Memcached

• Ruby 2.7.1

23

• NodeJS/NPM/Yarn

Despite that this is a long list, we can install it all in one command.

We’ll run this from a folder where our application is installed, because then the Ruby Version will
be auto-detected from our .ruby-version file, and in addition to installing all the dependencies the
script will also run bundle install and npm install (or yarn install). Not bad, huh?

${BASHMATIC_HOME}/bin/dev-setup \
 -g "ruby postgres mysql caching js monitoring" \
 -r $(cat .ruby-version) \
 -p 9.5 \ # use PostgreSQL version 9.5
 -m 5.6 # use MySQL version 5.6

This compact command line installs a ton of things, but don’t take our word for it - run it yourself.
Or, at the very least enjoy this one extremely long screenshot :)

9.4. Example IV: Installing GRC Colourify Tool
This is a great tool that colorizes nearly any other tool''s output.

Run it like so:

${BASHMATIC_HOME}/bin/install-grc

You might need to enter your password for SUDO.

Once it completes, run source ~/.bashrc (or whatever shell you use), and type something like ls -al
or netstat -rn or ping 1.1.1.1 and notice how all of the above is nicely colored.

9.5. Example V: db Shortcut for Database Utilities & db
top
If you are using PostgreSQL, you are in luck! Bashmatic includes numerous helpers for PostreSQL’s
CLI utility psql.

Before you begin, we recommend that you install file .psqlrc from Bashmatic’s
conf directory into your home folder. While not required, this file sets up your
prompt and various macros for PostgreSQL that will come very handy if you use
psql with any regularity.

What is db top anyway?

Just like with the regular top you can see the "top" resource-consuming processes running on your
local system, with dbtop you can observe a self-refreshing report of the actively running queries on
up to three database servers at the same time.

24

https://github.com/kigster/bashmatic/blob/main/.dev-setup-completed.png

Here is the pixelated screenshot of dbtop running against two live databases:

In order for this to work, you must first define database connection parameters in a YAML file
located at the following PATH: ~/.db/database.yml.

Here is how the file should be organized (if you ever used Ruby on Rails, the standard
config/database.yml file should be fully compatible):

development:
 database: development
 username: postgres
 host: localhost
 password:
staging:
 database: staging
 username: postgres
 host: staging.db.example.com
 password:
production:

25

https://github.com/kigster/bashmatic/blob/main/FUNCTIONS.adoc#db-top

 database: production
 username: postgres
 host: production.db.example.com
 password: "a098098safdaf0998ff79789a798a7sdf"

Given the above file, you should be able to run the following command to see all available
(registered in the above YAML file) connections:

$ db connections
development
staging
production

Once that’s working, you should be able run dbtop:

db top development staging production

At the moment, only the default port 5432 is supported. If you are using an
alternative port, and as long as it’s shared across the connections you can set the
PGPORT environment variable that psql will read.

DB Top Configuration:

You can configure the following settings for db top:

1. You can change the location of the database.yml file with db.config.set-file <filepath>

2. You can change the refresh rate of the dbtop with eg. db.top.set-refresh 0.5 (in seconds,
fractional values allowed). This sets the sleep time between the screen is fully refreshed.

9.6. Other db Functions
If you run db without any arguments, or with -h you will see the following:

26

As you might notice, there is an ever-growing list of "actions" — the sub-commands to the db script.

9.7. Sub-Commands of db
You can view the full list by passing --commands flag:

Altgernatively, here is the --examples view:

27

9.7.1. Sub-Command db connections

You can get a list of all availabled db connections with either

db connections
OR
db --connections

28

9.7.2. Sub-Command db pga (eg. pg_activity)

For instance, a recent addition is the ability to invoke pg_activity Python-based DB "top", a much
more advanced top query monitor for PostgreSQL.

You can invoke db pga <connection> where the connection is taken from the database connection
definitions shown above. This is what pg-activity looks like in action:

9.7.3. Other Sub-Commands

Once you know what database you are connecting to, you can then run one of the commands:

db connect <connection>

opens psql session to the given connection

db db-settings-toml <connection>

prints all PostgreSQL settings (obtained with show all) as a sorted TOML-formatted file.

db -q list-tables <connection>

print a list of all tables in the given database, -q (or --quiet) skips printing the header so that only
the table listing is printed.

db csv <connection> <query>

export the result of the query as a CSV to STDOUT, eg

$ db csv filestore "select * from files limit 2"

Results in the following output

29

https://github.com/dalibo/pg_activity

component_id,file_path,fingerprint_sha_256,fingerprint_comment_stripped_sha_256,licens
e_info
6121f5b3-d68d-479d-9b83-
77e9ca07dd2b,weiboSDK/src/main/java/com/sina/weibo/sdk/openapi/models/Tag.java,
6121f5b3-d68d-479d-9b83-
77e9ca07dd2b,weiboSDK/src/main/java/com/sina/weibo/sdk/openapi/models/Comment.java,

9.8. bin/tablet Script
Building atop of the powerful db script mechanics, is another powerful script called tablet.

The script is meant to be run against one database, and perform a table-level operation on a set of
tables that can be specified in numerous ways. It started with the need to ANALYZE only some of
the tables, specifically those that have not been auto-analyzed, but grew into a much more capable
tool that can do things like:

• Analyze all tables in a database that have never been analyzed`

• Analyze all tables in a database that have not been analyzed in N days

• Analyze a set of specific tables, or exclude tables using regular expression

• Instead of analyzing tables, perform any other table-level command such as:

◦ TRUNCATE

◦ VACUUM and VACCUUM FULL

◦ DROP TABLE

◦ REINDEX TABLE

◦ etc..

Below is the screenshot of the help screen from this script:

30

31

Chapter 10. Usage
Welcome to Bashmatic – an ever growing collection of scripts and mini-bash frameworks for doing
all sorts of things quickly and efficiently.

We have adopted the Google Bash Style Guide, and it’s recommended that anyone committing to
this repo reads the guides to understand the conventions, gotchas and anti-patterns.

10.1. Function Naming Convention Unpacked
Bashmatic® provides a large number of functions, which are all loaded in your current shell. The
functions are split into two fundamental groups:

• Functions with names beginning with a . are considered "private" functions, for example
.run.env and .run.initializer

• All other functions are considered public.

The following conventions apply to all functions:

• We use the "dot" for separating namespaces, hence git.sync and gem.install.

• Function names should be self-explanatory and easy to read.

• DO NOT abbreviate words.

• All public functions must be written defensively: i.e. if the function is called from the Terminal
without any arguments, and it requires arguments, the function must print its usage info and a
meaningful error message.

For instance:

$ gem.install
┌──
───────────────┐
│ « ERROR » Error - gem name is required as an argument │
└──
───────────────┘

Now let’s run it properly:

$ gem.install simple-feed
 installing simple-feed (latest)...
 ✔︎ $ gem install simple-feed ▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪〔 5685 ms 〕 0
 ✔︎ $ gem list > ${BASHMATIC_TEMP}/.gem/gem.list ▪▪▪▪▪▪〔 503 ms 〕 0

The naming convention we use is a derivative of Google’s Bash StyleGuide, using . to separate BASH
function namespaces instead of much more verbose ::.

32

https://google.github.io/styleguide/shell.xml

10.2. Seeing All Functions
After running the above, run bashmatic.functions function to see all available functions. You can
also open the FUNCTIONS.adoc file to see the alphabetized list of all 422 functions.

10.3. Seeing Specific Functions
To get a list of module or pattern-specific functions installed by the framework, run the following:

$ bashmatic.functions-from pattern [columns]

For instance:

$ bashmatic.functions-from docker 2
docker.abort-if-down docker.build.container
docker.actions.build docker.containers.clean
.......
docker.actions.update

10.4. Various Modules
You can list various modules by listing the lib sub-directory of the ${BASHMATIC_HOME} folder.

Note how we use Bashmatic® helper columnize [columns] to display a long list in five columns.

$ ls -1 ${BASHMATIC_HOME}/lib | sed 's/\.sh//g' | columnize 5
7z deploy jemalloc runtime-config time
array dir json runtime trap
audio docker net set url
aws file osx set user
bashmatic ftrace output settings util
brew gem pids shell-set vim
caller git-recurse-updat progress-bar ssh yaml
color git ruby subshell
db sedx run sym

10.5. Key Modules Explained
At a high level, the following modules are provided, in order of importance:

10.5.1. Runtime Framework
Executing Commands The Right Way™

One of the key parts of Bashmatic is the framework around running commands and reporting on
their execution status.

33

doc/FUNCTIONS.pdf

The two most important functions in this framework are:

• run.set-next [option option …]

• run.set-all [option option …]

• run "command"

The first two allow you to configure how the run command behaves. The run.set-next only affects
the first invocation of run. After that all runtime options revert to the defaults.

run.set-all affects ALL run invocations following it.

The following options can be passed to the run.set-next and run.set-all:

abort-on-error

exits the script when the command fails.

ask-on-error

interactively asks the user when the command fails.

continue-on-error

prints a warning, and continues when the command fails.

dry-run-on

turns dry-run on

dry-run-off

turns dry-run off

on-decline-exit

when run.ui.ask is used and user says NO, exits the program.

on-decline-return

when run.ui.ask is used and user says NO, returns from the function.

show-command-on

shows the command being executed

show-command-off

silently executes the command

34

show-output-off

swallows command’s STDOUT, but prints STDERR on error

show-output-on

prints STDOUT of the command as it executes

For example:

❯ run.set-next show-output-off; run "ls -1 | wc -l"; run.set-next show-output-on; run
"ls -1 | wc -l";
 ✔︎ ❯ ls -1 | wc -l ▪▪▪〔 74 ms 〕
0
 # Command below will be shown with its output:
 ❯ ls -1 | wc -l
 17

 ✔︎ ▪▪▪〔 80 ms 〕 0

The following files provide this functionality:

• lib/run.sh

• lib/runtime.sh

• lib/runtime-config.sh.

These collectively offer the following functions:

$ bashmatic.functions-from 'run*'

run run.set-next
run.config.detail-is-enabled run.set-next.list
run.config.verbose-is-enabled run.ui.ask
run.inspect run.ui.ask-user-value
run.inspect-variable run.ui.get-user-value
run.inspect-variables run.ui.press-any-key
run.inspect-variables-that-are run.ui.retry-command
run.inspect.set-skip-false-or-blank run.variables-ending-with
run.on-error.ask-is-enabled run.variables-starting-with
run.print-variable run.with.minimum-duration
run.print-variables run.with.ruby-bundle
run.set-all run.with.ruby-bundle-and-output
run.set-all.list

Using these functions you can write powerful shell scripts that display each command they run, it’s
status, duration, and can abort on various conditions. You can ask the user to confirm, and you can
show a user message and wait for any key pressed to continue.

35

Examples of Runtime Framework

NOTE, in the following examples we assume you installed the library into
your project’s folder as .bashmatic (a "hidden" folder starting with a dot).

Programming style used in this project lends itself nicely to using a DSL-like approach to shell
programming. For example, in order to configure the behavior of the run-time framework (see
below) you would run the following command:

#!/usr/bin/env bash

(See below on the location of .bashmatic and ways to install it)
source ${BASHMATIC_HOME}/init.sh

configure global behavior of all run() invocations
run.set-all abort-on-error show-output-off

run "git clone https://gthub.com/user/rails-repo rails"
run "cd rails"
run "bundle check || bundle install"

the following configuration only applies to the next invocation of `run()`
and then resets back to `off`
run.set-next show-output-on
run "bundle exec rspec"

And most importantly, you can use our fancy UI drawing routines to communicate with the user,
which are based on familiar HTML constructs, such as h1, h2, hr, etc.

10.5.2. Controlling Output

A large chunk of Bashmatic is devoted to printing pretty dialogs and controlling the output of
program execution.

The lib/output.sh module does all of the heavy lifting with providing many UI elements, such as
frames, boxes, lines, headers, and many more.

Here is the list of functions in this module:

$ bashmatic.functions-from output 3
abort error: left-prefix
ascii-clean h.black ok
box.blue-in-green h.blue okay
box.blue-in-yellow h.green output.color.off
box.green-in-cyan h.red output.color.on
box.green-in-green h.yellow output.is-pipe
box.green-in-magenta h1 output.is-redirect
box.green-in-yellow h1.blue output.is-ssh

36

box.magenta-in-blue h1.green output.is-terminal
box.magenta-in-green h1.purple output.is-tty
box.red-in-magenta h1.red puts
box.red-in-red h1.yellow reset-color
box.red-in-yellow h2 reset-color:
box.yellow-in-blue h2.green screen-width
box.yellow-in-red h3 screen.height
box.yellow-in-yellow hdr screen.width
br hl.blue shutdown
center hl.desc stderr
columnize hl.green stdout
command-spacer hl.orange success
cursor.at.x hl.subtle test-group
cursor.at.y hl.white-on-orange ui.closer.kind-of-ok
cursor.down hl.white-on-salmon ui.closer.kind-of-ok:
cursor.left hl.yellow ui.closer.not-ok
cursor.rewind hl.yellow-on-gray ui.closer.not-ok:
cursor.right hr ui.closer.ok:
cursor.up hr.colored warn
debug inf warning
duration info warning:
err info:
error left

Note that some function names end with : – this indicates that the function outputs a new-line in
the end. These functions typically exist together with their non-:-terminated counter-parts. If you
use one, eg, inf, you are then supposed to finish the line by providing an additional output call,
most commonly it will be one of ok:, ui.closer.not-ok: and ui.closer.kind-of-ok:.

Here is an example:

function valid-cask() { sleep 1; return 0; }
function verify-cask() {
 inf "verifying brew cask ${1}...."
 if valid-cask ${1}; then
 ok:
 else
 not-ok:
 fi
}

When you run this, you should see something like this:

 $ verify-cask TextMate
 ✔︎ verifying brew cask TextMate....

In the above example, you see the checkbox appear to the left of the text. In fact, it appears a
second after, right as sleep 1 returns. This is because this paradigm is meant for wrapping

37

constructs that might succeed or fail.

If we change the valid-cask function to return a failure:

function valid-cask() { sleep 1; return 1; }

Then this is what we’d see:

$ verify-cask TextMate
 ✘ verifying brew cask TextMate....

Output Components

Components are BASH functions that draw something concrete on the screen. For instance, all
functions starting with box. are components, as are h1, h2, hr, br and more.

$ h1 Hello

┌───────────────────┐
│ Hello │
└───────────────────┘

These are often named after HTML elements, such as hr, h1, h2, etc.

Output Helpers

Here is another example where we are deciding whether to print something based on whether the
output is a proper terminal (and not a pipe or redirect):

output.is-tty && h1 "Yay For Terminals!"
output.has-stdin && echo "We are being piped into..."

The above reads more like a high level language like Ruby or Python than Shell. That’s because
BASH is more powerful than most people think.

There is an example script that demonstrates the capabilities of Bashmatic.

If you ran the script, you should see the output shown in this screenshot. Your colors may vary
depending on what color scheme and font you use for your terminal.

10.5.3. Package management: Brew and RubyGems

You can reliably install ruby gems or brew packages with the following syntax:

#!/usr/bin/env bash

38

examples/test-ui.sh
.bashmatic.png

source ${BASHMATIC_HOME}/init.sh
h2 "Installing ruby gem sym and brew package curl..."
gem.install sym
brew.install.package curl

success "installed Sym version $(gem.version sym)"

When you run the above script, you shyould seee the following output:

10.5.4. Shortening URLs and Github Access

You can shorten URLs on the command line using Bitly, but for this to work, you must set the
following environment variables in your shell init:

export BITLY_LOGIN="<your login>"
export BITLY_API_KEY="<your api key>"

Then you can run it like so:

$ url.shorten https://raw.githubusercontent.com/kigster/bashmatic/main/bin/install
http://bit.ly/2IIPNE1

10.5.5. Github Access

There are a couple of Github-specific helpers:

github.clone github.setup
github.org github.validate

For instance:

$ github.clone sym

 ✘ Validating Github Configuration...

 Please enter the name of your Github Organization:
 $ kigster

39

 Your github organization was saved in your ~/.gitconfig file.
 To change it in the future, run:

 $ github.org <org-name>

 ✔︎ $ git clone git@github.com:kigster/sym ▪▪▪▪▪▪〔 931 ms 〕

10.5.6. File Helpers

$ bashmatic.functions-from file

file.exists_and_newer_than file.list.filter-non-empty
file.gsub file.size
file.install-with-backup file.size.mb
file.last-modified-date file.source-if-exists
file.last-modified-year file.stat
file.list.filter-existing

For instance, file.stat offers access to the fstat() C-function:

 $ file.stat README.md st_size
22799

10.5.7. Array Helpers

$ bashmatic.functions-from array

array.to.bullet-list array.includes
array.has-element array.includes-or-exit
array.to.csv array.from.stdin
array-join array.join
array-piped array.to.piped-list
array.includes-or-complain

For instance:

$ declare -a farm_animals=(chicken duck rooster pig)
$ array.to.bullet-list ${farm_animals[@]}
 • chicken
 • duck
 • rooster
 • pig
$ array.includes "duck" "${farm_animals[@]}" && echo Yes || echo No
Yes

40

$ array.includes "cow" "${farm_animals[@]}" && echo Yes || echo No
No

10.5.8. Utilities

The utilities module has the following functions:

$ bashmatic.functions-from util

pause.long util.install-direnv
pause util.is-a-function
pause.short util.is-numeric
pause.medium util.is-variable-defined
util.append-to-init-files util.lines-in-folder
util.arch util.remove-from-init-files
util.call-if-function util.shell-init-files
shasum.sha-only util.shell-name
shasum.sha-only-stdin util.ver-to-i
util.functions-starting-with util.whats-installed
util.generate-password watch.ls-al

For example, version helpers can be very handy in automated version detection, sorting and
identifying the latest or the oldest versions:

$ util.ver-to-i '12.4.9'
112004009
$ util.i-to-ver $(util.ver-to-i '12.4.9')
12.4.9

10.5.9. Ruby and Ruby Gems

Ruby Version Helpers and Ruby Gem Helpers, that can extract curren gem version from either
Gemfile.lock or globally installed gem list.

Additional Ruby helpers abound:

$ bashmatic.functions-from ruby

bundle.gems-with-c-extensions ruby.install-ruby-with-deps
interrupted ruby.install-upgrade-bundler
ruby.bundler-version ruby.installed-gems
ruby.compiled-with ruby.kigs-gems
ruby.default-gems ruby.linked-libs
ruby.full-version ruby.numeric-version
ruby.gemfile-lock-version ruby.rbenv
ruby.gems ruby.rubygems-update
ruby.gems.install ruby.stop

41

lib/ruby.sh
lib/gem.sh

ruby.gems.uninstall ruby.top-versions
ruby.init ruby.top-versions-as-yaml
ruby.install ruby.validate-version
ruby.install-ruby

From the obvious ruby.install-ruby <version> to incredibly useful ruby.top-versions <platform> –
which, using rbenv and ruby_build plugin, returns the most recent minor version of each major
version upgrade, as well as the YAML version that allows you to pipe the output into your
.travis.yml to test against each major version of Ruby, locked to the very latest update in each.

$ ruby.top-versions
2.0.0-p648
2.1.10
2.2.10
2.3.8
2.4.9
2.5.7
2.6.5
2.7.0
2.8.0-dev

$ ruby.top-versions jruby
jruby-1.5.6
jruby-1.6.8
jruby-1.7.27
jruby-9.0.5.0
jruby-9.1.17.0
jruby-9.2.10.0

$ ruby.top-versions mruby
mruby-dev
mruby-1.0.0
mruby-1.1.0
mruby-1.2.0
mruby-1.3.0
mruby-1.4.1
mruby-2.0.1
mruby-2.1.0

Gem Helpers

These are fun helpers to assist in scripting gem management.

$ bashmatic.functions-from gem

g-i gem.gemfile.version
g-u gem.global.latest-version
gem.cache-installed gem.global.versions

42

gem.cache-refresh gem.install
gem.clear-cache gem.is-installed
gem.configure-cache gem.uninstall
gem.ensure-gem-version gem.version

For instance

$ g-i awesome_print
 ✔︎ gem awesome_print (1.8.0) is already installed
$ gem.version awesome_print
1.8.0

10.5.10. Audio & Video Compression Helpers

You can discover the audio and video functions using bashmatic.functions helper:

 ❯ bashmatic.functions 1 | egrep -i 'video|audio'
audio.dir.mp3-to-wav
audio.dir.rename-karaoke-wavs
audio.dir.rename-wavs
audio.file.frequency
audio.file.mp3-to-wav
audio.make.mp3
audio.make.mp3.usage
audio.make.mp3s
video-squeeze
video.convert.compress

These commands auto-install ffmpeg and other utilities, and then use best in class compression. For
instance, here is 80% compressed video file:

10.5.11. Additional Helpers

There are plenty more modules, that help with:

43

• AWS helpers – requires awscli and credentials setup, and offers some helpers to simplify AWS
management.

• Docker Helpers – assist with docker image building and pushing/pulling

• Sym – encryption with the gem called sym

And many more.

See the full function index with the function implementation body in the FUNCTIONS.adoc index.

44

lib/aws.sh
lib/docker.sh
lib/sym.sh
https://github.com/kigster/sym
doc/FUNCTIONS.pdf

Chapter 11. How To Guide

11.1. Write new DSL in the Bashmatic® Style
The following example is the actual code from a soon to be integrated AWS credentials install script.
This code below checks that a user has a local ~/.aws/credentials file needed by the awscli, and in
the right INI format. If it doesn’t find it, it checks for the access key CSV file in the ~/Downloads
folder, and converts that if found. Now, if even that is not found, it prompts the user with
instructions on how to generate a new key pair on AWS IAM website, and download it locally,
thereby quickly converting and installing it as a proper credentials file. Not bad, for a compact
BASH script, right? (of course, you are not seeing all of the involved functions, only the public ones).

define a new function in AWS namespace, related to credentials.
name of the function is self-explanatory: it validates credentials
and exits if they are invalid.
aws.credentials.validate-or-exit() {
 aws.credentials.are-valid || {
 aws.credentials.install-if-missing || bashmatic.exit-or-return 1
 }
}

aws.credentials.install-if-missing() {
 aws.credentials.are-present || { # if not present
 aws.access-key.is-present || aws.access-key.download # attempt to download the key
 aws.access-key.is-present && aws.credentials.check-downloads-folder # attempt to
find it in ~/Downloads
 }

 aws.credentials.are-present || { # final check after all attempts to install
credentials
 error "Unable to find AWS credentials. Please try again." && bashmatic.exit-or-
return 1
 }

 bashmatic.exit-or-return 0
}

Now, how would you use it in a script? Let’s say you need a script to upload something to AWS S3.
But before you begin, wouldn’t it be nice to verify that the credentials exist, and if not – help the
user install it? Yes it would.

And that is exactly what the code above does, but it looks like a DSL. because it is a DSL.

This script could be your bin/s3-uploader

aws.credentials.validate-or-exit
if we are here, that means that AWS credentials have been found.

45

and we can continue with our script.

11.2. How can I test if the function was ran as part of a
script, or "sourced-in"?
Some bash files exists as libraries to be "sourced in", and others exist as scripts to be run. But users
won’t always know what is what, and may try to source in a script that should be run, or vice versa
- run a script that should be sourced in.

What do you, programmer, do to educate the user about correct usage of your script/library?

Bashmatic® offers a reliable way to test this:

#!/usr/bin/env bash
load library
if [[-f "${Bashmatic__Init}"]]; then source "${Bashmatic__Init}"; else source
${BASHMATIC_HOME}/init.sh; fi
bashmatic.validate-subshell || return 1

If you’rather require a library to be sourced in, but not run, use the code as follows:

#!/usr/bin/env bash
load library
if [[-f "${Bashmatic__Init}"]]; then source "${Bashmatic__Init}"; else source
${BASHMATIC_HOME}/init.sh; fi
bashmatic.validate-sourced-in || exit 1

11.3. How can I change the underscan or overscan for
an old monitor?
If you are stuck working on a monitor that does not support switching digit input from TV to PC,
NOR does OS-X show the "underscan" slider in the Display Preferences, you may be forced to
change the underscan manually. The process is a bit tricky, but we have a helpful script to do that:

$ source init.sh
$ change-underscan 5

This will reduce underscan by 5% compared to the current value. The total value is 10000, and is
stored in the file /var/db/.com.apple.iokit.graphics. The tricky part is determining which of the
display entries map to your problem monitor. This is what the script helps with.

Do not forget to restart after the change.

Acknowledgements: the script is an automation of the method offered on this blog post.

46

http://ishan.co/external-monitor-underscan

Chapter 12. Contributing
Please submit a pull request or at least an issue!

12.1. Running Unit Tests
The framework comes with a bunch of automated unit tests based on the fantastic framework bats.

Bats is auto-installed by the bin/specs script.

12.1.1. Run Tests Using the Provided bin/specs script

We use Bats framework for testing, however we provided a convenient wrapper bin/specs which
installs Bats and its dependencies so that we don’t have to worry about installing it manually.

The script can be run:

1. Without any arguments to run all tests in the test folder in parallel by default

2. You can pass one or more existing test file paths as arguments, eg bin/specs test/time_test.bats

3. Finally, you can pass an abbreviated test file name — eg "time" will resolve to
test/time_test.bats

The script accepts a bunch of CLI arguments and flags shown below:

47

https://github.com/kigster/bashmatic/pulls/new
https://github.com/sstephenson/bats.git

48

12.1.2. Running Specs Sequentially with bin/spec -P

By the default, bin/spec runs tests in parallel, and takes about 20 seconds.

If you pass the -P/--no-parallel flag, it will run sequentially and take about twice as long.

Below is the screenshot of the tests running in the parallel mode. The script automatically detects
that my machine has 16 CPU cores and uses this as a parallization factor.

12.1.3. Run Tests Parallel using the Makefile

Note that you can run all tests in parallel using the following make target:

49

make test

While not every single function is tested (far from it), we do try to add tests to the critical ones.

Please see existing tests for the examples.

12.1.4. Run Tests Sequentially using the Makefile

Alternatively, you can run the entire test suite via the Makefile, using one of two targets:

make test-sequential

50

https://github.com/kigster/bashmatic/blob/main/test/array_test.bats

Chapter 13. Copyright & License

© 2016-2022 Konstantin Gredeskoul
This project is distributed under the MIT License.

51

	Bashmatic® — BASH-based DSL helpers for humans, sysadmins, and fun.
	Table of Contents
	Chapter 1. Please Donate
	Chapter 2. CI Matrix
	Chapter 3. Introduction
	Chapter 4. Programming Style: Modern BASH + DSL
	Chapter 5. Compatibility
	Chapter 6. Project Motivation
	Chapter 7. Installing Bashmatic
	7.1. 1. Automated Install
	7.2. 2. Automated Install, More Explicit
	7.2.1. Installing a Particular Version or a Branch
	7.2.2. Customizing the Installer Script

	7.3. Understanding what the Installer Does
	7.3.1. To load Bashmatic at Login, or Not?
	If you load Bashmatic on login (the default installer mode):
	If you do not want to load Bashnmatic on login

	7.4. When curl is not available
	7.4.1. Discovering Available Functions

	7.5. Manual Installation
	7.6. Using Git
	7.7. Using Curl
	7.8. Reloading Bashmatic
	7.9. Loading Bashmatic at Startup

	Chapter 8. Discovering via the Makefile
	8.1. Befriending the Makefile
	8.2. Docker Make Targets

	Chapter 9. Examples of Bashmatic in Action
	9.1. Example I. Install Gems via Homebrew
	9.2. Example II: Download and install binaries.
	9.3. Example III: Developer Environment Bootstrap Script
	9.4. Example IV: Installing GRC Colourify Tool
	9.5. Example V: db Shortcut for Database Utilities & db top
	9.6. Other db Functions
	9.7. Sub-Commands of db
	9.7.1. Sub-Command db connections
	9.7.2. Sub-Command db pga (eg. pg_activity)
	9.7.3. Other Sub-Commands

	9.8. bin/tablet Script

	Chapter 10. Usage
	10.1. Function Naming Convention Unpacked
	10.2. Seeing All Functions
	10.3. Seeing Specific Functions
	10.4. Various Modules
	10.5. Key Modules Explained
	10.5.1. Runtime Framework — Executing Commands The Right Way™
	Examples of Runtime Framework

	10.5.2. Controlling Output
	Output Components
	Output Helpers

	10.5.3. Package management: Brew and RubyGems
	10.5.4. Shortening URLs and Github Access
	10.5.5. Github Access
	10.5.6. File Helpers
	10.5.7. Array Helpers
	10.5.8. Utilities
	10.5.9. Ruby and Ruby Gems
	Gem Helpers

	10.5.10. Audio & Video Compression Helpers
	10.5.11. Additional Helpers

	Chapter 11. How To Guide
	11.1. Write new DSL in the Bashmatic® Style
	11.2. How can I test if the function was ran as part of a script, or "sourced-in"?
	11.3. How can I change the underscan or overscan for an old monitor?

	Chapter 12. Contributing
	12.1. Running Unit Tests
	12.1.1. Run Tests Using the Provided bin/specs script
	12.1.2. Running Specs Sequentially with bin/spec -P
	12.1.3. Run Tests Parallel using the Makefile
	12.1.4. Run Tests Sequentially using the Makefile

	Chapter 13. Copyright & License

